H11-M05_DOC.zip
データセットの概要より
Method: 使用多實例學習訓練WSI的分類與切割模型,只需要給定WSI有無包含腫瘤組織資訊即可訓練具有分割與分類效果的模型。 模型訓練分為兩階段, 第一階段是使用 Self-Supervised Learning 去訓練一個好的 embedder,把patch轉為特徵向量 ,第二階段會使用到訓練好的 Aggregator...
Source: H11-M05_基於不精確標註資料的弱監督式病理影像切割模型
追加情報
フィールド | 値 |
---|---|
最終更新日 | 2023 / 10月 / 2, |
メタデータ最終更新日時 | 2023 / 10月 / 2, |
作成日 | 2023 / 10月 / 2, |
データ形式 | ZIP |
ライセンス | Other (Non-Commercial) |
Media type | application/zip |
Size | 152,726 |
format | ZIP |
has views | True |
id | 60095789-4dff-4aea-9768-8b1033325220 |
last modified | 1 年以上前 |
md5 | 868865a8846f17aa7785e6cfbd3dd013 |
on same domain | True |
package id | a251e0eb-cfe2-487b-8d81-07b2c6767126 |
position | 2 |
proxy url | https://scidm.nchc.org.tw/ja/dataset/a251e0eb-cfe2-487b-8d81-07b2c6767126/resource/60095789-4dff-4aea-9768-8b1033325220/nchcproxy/H11-M05_DOC.zip |
revision id | 70098e41-333a-47cb-9071-05875ad1619c |
sha256 | 023882168b4e6796923772f1132f5b1537cc9d5f58d1777014b180e9fd21e582 |
state | active |
url type | upload |
作成日 | 1 年以上前 |
推薦資料集: