需申請審核

H11-M116_ADMM-SRNet 基於 ADMM 與對比特徵之單分類稀疏表示網路

Method

One-class classification aims to learn one-class models from only in-class training samples. Because of lacking out-of-class samples during training, most conventional deep learning based methods suffer from the feature collapse problem. In contrast, contrastive learning based methods can learn features from only in-class samples but are hard to be end-to-end trained with one-class models. To address the aforementioned problems, we propose alternating direction method of multipliers based sparse representation network (ADMM-SRNet). ADMM-SRNet contains the heterogeneous contrastive feature (HCF) network and the sparse dictionary (SD) network. The HCF network learns in-class heterogeneous contrastive features by using contrastive learning with heterogeneous augmentations. Then, the SD network models the distributions of the in-class training samples by using dictionaries computed based on ADMM. By coupling the HCF network, SD network and the proposed loss functions, our method can effectively learn discriminative features and one-class models of the in-class training samples in an end-to-end trainable manner. Experimental results show that the proposed method outperforms state-of-the-art methods on CIFAR-10, CIFAR-100 and ImageNet-30 datasets under one-class classification settings. Code is available at https://github.com/nchucvml/ADMM-SRNet .

Usage

COMMING SOON

Release Note

  • v1.0.0, 2023/07/11

Citation

C. -Y. Chiou, K. -T. Lee, C. -R. Huang and P. -C. Chung, "ADMM-SRNet: Alternating Direction Method of Multipliers Based Sparse Representation Network for One-Class Classification," in IEEE Transactions on Image Processing, vol. 32, pp. 2843-2856, 2023, doi: 10.1109/TIP.2023.3274488.

Acknowledgements

This work was supported in part by the National Science and Technology Council of Taiwan under Grant NSTC 111-2634-F-006-012, Grant NSTC 111-2628-E-006-011-MY3, Grant NSTC 112-2622-8-006-009-TE1, and Grant MOST 111-2327-B-006-007. We thank to National Center for High-performance Computing (NCHC) for providing computational and storage resources.

資料與資源

此資料集沒有資料

額外的資訊

欄位
來源 https://github.com/nchucvml/ADMM-SRNet
作者 邱建毓
最後更新 十月 11, 2023, 15:01 (CST)
建立 七月 11, 2023, 11:44 (CST)
聯繫Email email@address.org
聯繫窗口 someone

推薦資料集:


  • 102年度新北市總預算歲入歲出簡明比較分析表

    付費方式 免費
    更新頻率 不定期
    1.102年度新北市總預算歲入歲出簡明比較分析表2.單位:新臺幣千元3.完整資料詳參""新北市政府主計處網頁->總預算->102年度""(https://www.bas.ntpc.gov.tw/home.jsp?id=ae62173b3896f185&act=be4f48068b2b0031&dataserno=d7bc58...
  • 臺北市各項稅捐收回以前年度繳付數109年6月止

    付費方式 免費
    更新頻率 不定期
    臺北市各項稅捐收回以前年度繳付數109年6月止
  • 花蓮縣礦石開採特別稅108年度7月份徵績表

    付費方式 免費
    更新頻率 不定期
    花蓮縣礦石開採特別稅108年度7月份徵績表
  • insight_test_28153

    付費方式 免費
    更新頻率 不定期
  • 申請墊償應備文件

    付費方式 免費
    更新頻率 不定期
    申請墊償應備文件