H11-M08_WEIGHT.zip
From the dataset abstract
Method 最先進的(SOTA)方法通常是通過監督式學習來訓練的,這需要大量的labeled data。由於標記數資料需要大量的人力和時間成本,尤其是那些需要由專家來標記的資料(如醫學相關),所需要的成本更是難以負擔。Unlabeled data因為不需要標註所以取得相對容易且成本較低,因此如何能有效利用unlabeled...
Source: H11-M08_漸進式資料標註更正的自主學習模型
Additional Information
Field | Value |
---|---|
Data last updated | October 5, 2023 |
Metadata last updated | October 5, 2023 |
Created | October 5, 2023 |
Format | ZIP |
License | Other (Non-Commercial) |
Created | over 1 year ago |
Media type | application/zip |
Size | 993,768,623 |
format | ZIP |
has views | True |
id | 99d6f3bc-6ae2-4166-9bba-d2490df005ca |
last modified | over 1 year ago |
md5 | dabd66aa7159da54527669a763379552 |
on same domain | True |
package id | 6461a428-dcdb-432e-bb23-11024aaf1024 |
position | 2 |
proxy url | https://scidm.nchc.org.tw/en/dataset/6461a428-dcdb-432e-bb23-11024aaf1024/resource/99d6f3bc-6ae2-4166-9bba-d2490df005ca/nchcproxy/H11-M08_WEIGHT.zip |
revision id | 65f971d7-863f-4ac4-a2e1-e3478a0d2edf |
sha256 | 751ef7ee8da9843dccab871f7abc9679f749ce32a2650ef8031e6a3c88add189 |
state | active |
url type | upload |
推薦資料集: