Applicaiton Required

H11-M05_基於不精確標註資料的弱監督式病理影像切割模型

Method:

使用多實例學習訓練WSI的分類與切割模型,只需要給定WSI有無包含腫瘤組織資訊即可訓練具有分割與分類效果的模型。 模型訓練分為兩階段, 第一階段是使用 Self-Supervised Learning 去訓練一個好的 embedder,把patch轉為特徵向量 ,第二階段會使用到訓練好的 Aggregator 來整合一張WSI所切割出的patch的資訊。模型訓練好後,給定一張WSI,除了能輸出其分類外,亦可輸出其異常區域。

Usage:

WSI分類與分割

Release Note:

v1.0.1, 2023/08/11

Data and Resources

Additional Info

Field Value
Source https://github.com/sy2es94098/ViTAGG-MIL
Author 黃有源
Maintainer 黃有源
Version 1.0
Last Updated October 10, 2023, 20:03 (CST)
Created July 10, 2023, 11:55 (CST)
聯繫Email sy2es94098@gmail.com
聯繫窗口 黃有源

推薦資料集:


  • 國軍退除役官兵輔導委員會中程施政計畫

    Payment instrument Free
    Update frequency Irregular
    提供國軍退除役官兵輔導委員會102至105年度中程施政計畫內容
  • 高速公路路權內外單位管線埋設情形

    Payment instrument Free
    Update frequency Irregular
    高速公路路權內外單位管線埋設情形表
  • 110年臺東縣卑南鄉土地公告現值

    Payment instrument Free
    Update frequency Irregular
    臺東縣卑南鄉土地公告現值
  • 金融聯合徵信中心信用卡不同性別應繳款金額統計表

    Payment instrument Free
    Update frequency Irregular
    信用卡不同性別應繳款金額統計表(金融聯合徵信中心)
  • 貿易推廣相關措施

    Payment instrument Free
    Update frequency Irregular
    提供貿易局協助廠商拓銷海外市場各項措施