Fisheye8K_all_including_train&test_1.zip

URL: https://scidm.nchc.org.tw/ja/dataset/fisheye8k/resource/9461c310-d2b2-45b6-afa7-0e2b2169f74c/nchcproxy

  • this the all dataset files including train/ and test/ folders.

Description

With the advance of AI, road object detection has been a prominent topic in computer vision, mostly using perspective cameras. Fisheye lens provides omnidirectional wide coverage for using fewer cameras to monitor road intersections, however with view distortions. To our knowledge, there is no existing open dataset prepared for traffic surveillance on fisheye cameras. This paper introduces an open FishEye8K benchmark dataset for road object detection tasks, which comprises 157K bounding boxes across five classes (Pedestrian, Bike, Car, Bus, and Truck). In addition, we present benchmark results of State-of-The-Art (SoTA) models, including variations of YOLOv5, YOLOR, YOLO7, and YOLOv8. The dataset comprises 8,000 images recorded in 22 videos using 18 fisheye cameras for traffic monitoring in Hsinchu, Taiwan, at resolutions of 1080x1080 and 1280x1280. The data annotation and validation process were arduous and time-consuming, due to the ultra-wide panoramic and hemispherical fisheye camera images with large distortion and numerous road participants, particularly people riding scooters. To avoid bias, frames from a particular camera were assigned to either the training or test sets, maintaining a ratio of about 70:30 for both the number of images and bounding boxes in each class. Experimental results show that YOLOv8 and YOLOR outperform on input sizes 640x640 and 1280x1280, respectively. The dataset will be available on the GitHub (https://github.com/MoyoG/FishEye8K) with PASCAL VOC, MS COCO, and YOLO annotation formats. The FishEye8K benchmark will provide significant contributions to the fisheye video analytics and smart city applications.

@InProceedings{Munk_2023_CVPR_Workshops, author = {Munkhjargal Gochoo and Munkh-Erdene Otgonbold and Erkhembayar Ganbold and Hsieh, Jun-Wei and Chang, Ming-Ching and Chen, Ping-Yang and Byambaa Dorj and Hamad Al Jassmi and Ganzorig Batnasan and Fady Alnajjar and Mohammed Abduljabbar and Lin, Fang-Pang}, title = {FishEye8K: A Benchmark and Dataset for Fisheye Camera Object Detection}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops}, month = {June}, year = {2023} }

このリソースのために作成されたビューはまだありません

追加情報

フィールド
最終更新日 unknown
メタデータ最終更新日時 2023 / 6月 / 2,
作成日 2023 / 6月 / 2,
データ形式 ZIP
ライセンス Creative Commons Attribution-NonCommercial 4.0
Media typeapplication/zip
formatZIP
id9461c310-d2b2-45b6-afa7-0e2b2169f74c
md56a9d4b5649ee9354ec9f0b816bf1f4db
package id003a91f5-ac12-47e6-8309-be46a8a55f7c
position2
revision id6542dc14-5b32-4183-99f6-4b6161a31715
sha2562cf105cc0b52673c19d25edad659353dc50ce88501083de07908bfcf3ba4cfe7
stateactive
作成日1 年以上前

推薦資料集:


  • 110年高雄市政府消防局歲出預算表

    Payment instrument Free
    Update frequency Irregular
    提供110年高雄市政府消防局歲出預算表
  • 林務局所轄自然步道軌跡圖-074_奧萬大國家森林遊樂區步道群

    Payment instrument Free
    Update frequency Irregular
    提供林務局所轄自然步道軌跡圖-074_奧萬大國家森林遊樂區步道群KML下載檔案。
  • 10981-03-03-2 臺中市爆竹煙火違法取締

    Payment instrument Free
    Update frequency Irregular
    爆竹煙火違法取締
  • Applicaiton Required

    Ivy GAP

    Payment instrument Free
    Update frequency Irregular
    This data collection consists of MRI/CT scan data for brain tumor patients that form the cohort for the resource Ivy Glioblastoma Atlast Project (Ivy GAP). There are 390 studies...
  • 急性病床住院案件住院日數超過三十日比率(醫院總額指標)

    Payment instrument Free
    Update frequency Irregular
    資料來源:保險醫事服務機構醫療服務點數申報資料 分子:分母案件中住院超過30日的案件數。 分母:出院案件數(僅急性床案件,不含急慢性床混合案件)。 計算公式:(分子/分母)x 100%