需申請審核

H11-M116_ADMM-SRNet 基於 ADMM 與對比特徵之單分類稀疏表示網路

Method

One-class classification aims to learn one-class models from only in-class training samples. Because of lacking out-of-class samples during training, most conventional deep learning based methods suffer from the feature collapse problem. In contrast, contrastive learning based methods can learn features from only in-class samples but are hard to be end-to-end trained with one-class models. To address the aforementioned problems, we propose alternating direction method of multipliers based sparse representation network (ADMM-SRNet). ADMM-SRNet contains the heterogeneous contrastive feature (HCF) network and the sparse dictionary (SD) network. The HCF network learns in-class heterogeneous contrastive features by using contrastive learning with heterogeneous augmentations. Then, the SD network models the distributions of the in-class training samples by using dictionaries computed based on ADMM. By coupling the HCF network, SD network and the proposed loss functions, our method can effectively learn discriminative features and one-class models of the in-class training samples in an end-to-end trainable manner. Experimental results show that the proposed method outperforms state-of-the-art methods on CIFAR-10, CIFAR-100 and ImageNet-30 datasets under one-class classification settings. Code is available at https://github.com/nchucvml/ADMM-SRNet .

Usage

COMMING SOON

Release Note

  • v1.0.0, 2023/07/11

Citation

C. -Y. Chiou, K. -T. Lee, C. -R. Huang and P. -C. Chung, "ADMM-SRNet: Alternating Direction Method of Multipliers Based Sparse Representation Network for One-Class Classification," in IEEE Transactions on Image Processing, vol. 32, pp. 2843-2856, 2023, doi: 10.1109/TIP.2023.3274488.

Acknowledgements

This work was supported in part by the National Science and Technology Council of Taiwan under Grant NSTC 111-2634-F-006-012, Grant NSTC 111-2628-E-006-011-MY3, Grant NSTC 112-2622-8-006-009-TE1, and Grant MOST 111-2327-B-006-007. We thank to National Center for High-performance Computing (NCHC) for providing computational and storage resources.

資料與資源

此資料集沒有資料

額外的資訊

欄位
來源 https://github.com/nchucvml/ADMM-SRNet
作者 邱建毓
最後更新 十月 11, 2023, 15:01 (CST)
建立 七月 11, 2023, 11:44 (CST)
聯繫Email email@address.org
聯繫窗口 someone

推薦資料集:


  • 行政院環境保護署環境保護基金附屬單位法定預算

    付費方式 免費
    更新頻率 不定期
    環境保護基金預算(法定預算)
  • 花蓮縣礦石開採特別稅106年度7月份徵績表

    付費方式 免費
    更新頻率 不定期
    花蓮縣礦石開採特別稅徵績表
  • 澎湖縣馬公市107年人口年齡層統計

    付費方式 免費
    更新頻率 不定期
    馬公市107年0-100歲以上人口年齡層統計
  • 新竹縣二手輔具資源提供單位

    付費方式 免費
    更新頻率 不定期
    新竹縣二手輔具資源提供單位聯絡資訊
  • 臺閩地區營業稅自動報繳單位申報情形分析表(行業別)

    付費方式 免費
    更新頻率 不定期
    臺閩地區營業稅自動報繳單位申報情形分析表(行業別)