需申請審核

H11-M116_ADMM-SRNet 基於 ADMM 與對比特徵之單分類稀疏表示網路

Method

One-class classification aims to learn one-class models from only in-class training samples. Because of lacking out-of-class samples during training, most conventional deep learning based methods suffer from the feature collapse problem. In contrast, contrastive learning based methods can learn features from only in-class samples but are hard to be end-to-end trained with one-class models. To address the aforementioned problems, we propose alternating direction method of multipliers based sparse representation network (ADMM-SRNet). ADMM-SRNet contains the heterogeneous contrastive feature (HCF) network and the sparse dictionary (SD) network. The HCF network learns in-class heterogeneous contrastive features by using contrastive learning with heterogeneous augmentations. Then, the SD network models the distributions of the in-class training samples by using dictionaries computed based on ADMM. By coupling the HCF network, SD network and the proposed loss functions, our method can effectively learn discriminative features and one-class models of the in-class training samples in an end-to-end trainable manner. Experimental results show that the proposed method outperforms state-of-the-art methods on CIFAR-10, CIFAR-100 and ImageNet-30 datasets under one-class classification settings. Code is available at https://github.com/nchucvml/ADMM-SRNet .

Usage

COMMING SOON

Release Note

  • v1.0.0, 2023/07/11

Citation

C. -Y. Chiou, K. -T. Lee, C. -R. Huang and P. -C. Chung, "ADMM-SRNet: Alternating Direction Method of Multipliers Based Sparse Representation Network for One-Class Classification," in IEEE Transactions on Image Processing, vol. 32, pp. 2843-2856, 2023, doi: 10.1109/TIP.2023.3274488.

Acknowledgements

This work was supported in part by the National Science and Technology Council of Taiwan under Grant NSTC 111-2634-F-006-012, Grant NSTC 111-2628-E-006-011-MY3, Grant NSTC 112-2622-8-006-009-TE1, and Grant MOST 111-2327-B-006-007. We thank to National Center for High-performance Computing (NCHC) for providing computational and storage resources.

資料與資源

此資料集沒有資料

額外的資訊

欄位
來源 https://github.com/nchucvml/ADMM-SRNet
作者 邱建毓
最後更新 2023年10月11日, 早上7點01分 (UTC+00:00)
建立 2023年7月11日, 凌晨3點44分 (UTC+00:00)
聯繫Email email@address.org
聯繫窗口 someone

推薦資料集:


  • insight_test_22976

    付費方式 免費
    更新頻率 不定期
  • 新竹縣政府稅務局職員(含聘僱)學歷性別統計表(截至108.12.31)

    付費方式 免費
    更新頻率 不定期
    新竹縣政府稅務局職員(含聘僱)學歷性別統計表(截至108.12.31)
  • 科技部生農環境與多樣性學門專題計畫補助清冊

    付費方式 免費
    更新頻率 不定期
    科技部生農環境與多樣性學門專題計畫補助清冊
  • 新北市固定式測速照相-泰山區

    付費方式 免費
    更新頻率 不定期
    新北市政府警察局所提供的固定測速照相主要提供欄位包含行政區、設置位置、速限、取締項目。-泰山區
  • 新竹縣政府稅務局主管人員性別統計表(截至109.12.31)

    付費方式 免費
    更新頻率 不定期
    一、新竹縣政府稅務局主管人員性別統計表(截至109.12.31) 二、本局女性主管佔職員人數(108人)比例:25% 三、本局女性主管佔女性職員人數(92人)比例:29%