需申請審核

H11-M116_ADMM-SRNet 基於 ADMM 與對比特徵之單分類稀疏表示網路

Method

One-class classification aims to learn one-class models from only in-class training samples. Because of lacking out-of-class samples during training, most conventional deep learning based methods suffer from the feature collapse problem. In contrast, contrastive learning based methods can learn features from only in-class samples but are hard to be end-to-end trained with one-class models. To address the aforementioned problems, we propose alternating direction method of multipliers based sparse representation network (ADMM-SRNet). ADMM-SRNet contains the heterogeneous contrastive feature (HCF) network and the sparse dictionary (SD) network. The HCF network learns in-class heterogeneous contrastive features by using contrastive learning with heterogeneous augmentations. Then, the SD network models the distributions of the in-class training samples by using dictionaries computed based on ADMM. By coupling the HCF network, SD network and the proposed loss functions, our method can effectively learn discriminative features and one-class models of the in-class training samples in an end-to-end trainable manner. Experimental results show that the proposed method outperforms state-of-the-art methods on CIFAR-10, CIFAR-100 and ImageNet-30 datasets under one-class classification settings. Code is available at https://github.com/nchucvml/ADMM-SRNet .

Usage

COMMING SOON

Release Note

  • v1.0.0, 2023/07/11

Citation

C. -Y. Chiou, K. -T. Lee, C. -R. Huang and P. -C. Chung, "ADMM-SRNet: Alternating Direction Method of Multipliers Based Sparse Representation Network for One-Class Classification," in IEEE Transactions on Image Processing, vol. 32, pp. 2843-2856, 2023, doi: 10.1109/TIP.2023.3274488.

Acknowledgements

This work was supported in part by the National Science and Technology Council of Taiwan under Grant NSTC 111-2634-F-006-012, Grant NSTC 111-2628-E-006-011-MY3, Grant NSTC 112-2622-8-006-009-TE1, and Grant MOST 111-2327-B-006-007. We thank to National Center for High-performance Computing (NCHC) for providing computational and storage resources.

資料與資源

此資料集沒有資料

額外的資訊

欄位
來源 https://github.com/nchucvml/ADMM-SRNet
作者 邱建毓
最後更新 十月 11, 2023, 15:01 (CST)
建立 七月 11, 2023, 11:44 (CST)
聯繫Email email@address.org
聯繫窗口 someone

推薦資料集:


  • 新竹科學園區人才培訓課程

    付費方式 免費
    更新頻率 不定期
    人才培訓相關課程
  • 綜合所得稅(初步核定)所得應納稅額及稅率各級距申報統計表-縣市別:臺南市

    付費方式 免費
    更新頻率 不定期
    綜合所得稅(初步核定)所得應納稅額及稅率各級距申報統計表-縣市別:臺南市 單位:金額(千元)
  • 亞洲水泥、台灣水泥、幸福水泥、信大水泥及中國力霸等股份有限公司申請對自菲律賓及韓國進口卜特蘭水泥及熟料課徵反傾銷稅暨臨時課徵反傾銷稅案產業損害最後調查公開資料

    付費方式 免費
    更新頻率 不定期
    經濟部貿易調查委員會開放「亞洲水泥、台灣水泥、幸福水泥、信大水泥及中國力霸等股份有限公司申請對自菲律賓及韓國進口卜特蘭水泥及熟料課徵反傾銷稅暨臨時課徵反傾銷稅案產業損害最後調查公開資料」資料集,歡迎多加應用--我國反傾銷稅案件之調查業務係採財經兩部兩階段(初步及最後階段)分工之雙軌制,除由財政部辦理傾銷初步及最後調查外,由經濟部(貿易調查委員會)辦理產...
  • 南區國稅局扣免繳(外僑人工建檔部分)統計表-105年度

    付費方式 免費
    更新頻率 不定期
    南區國稅局扣免繳(外僑人工建檔部分)統計表-105年度
  • 107年臺南市重要統計指標

    付費方式 免費
    更新頻率 不定期
    重要統計指標、財政收支、人力資源、失業率、就業人口數、就業者之行業結構、家庭收支、物價指數、土地、人口、社會治安、公共安全、社會福利及救助、教育文化、醫療、衛生、交通運輸、公共建設、工商業概況、環境保護