-
需申請審核 H11-M06_考慮到例外分佈的病理影像標註品質評估技術
更新頻率 不定期 瀏覽次數 2603 下載次數 13Method 使用無監督式學習訓練之病理影像異常檢測模型,僅須提供未帶有腫瘤區域的資料來訓練模型,便可協助醫師偵測出病理影像中可能的腫瘤區域。 模型訓練分為兩階段, 第一階段是使用 Self-Supervised Learning 去訓練一個好的 Image Encoder (類似 MoCo) ,第二階段會使用到訓練好的 Encoder... -
需申請審核 H11-M05_基於不精確標註資料的弱監督式病理影像切割模型
更新頻率 不定期 瀏覽次數 3257 下載次數 46Method: 使用多實例學習訓練WSI的分類與切割模型,只需要給定WSI有無包含腫瘤組織資訊即可訓練具有分割與分類效果的模型。 模型訓練分為兩階段, 第一階段是使用 Self-Supervised Learning 去訓練一個好的 embedder,把patch轉為特徵向量 ,第二階段會使用到訓練好的 Aggregator... -
需申請審核 H11-M32_肝組織脂肪變性細胞偵測模型
更新頻率 不定期 瀏覽次數 1997 下載次數 27使用RnB-Unet模型偵測非酒精性脂肪肝之病理切片中的油滴之侯選區域及邊緣機率,以邊緣符合分數BMS篩選出正確之油滴區域,提供數量、面積、面積占比等量化資訊,協助醫師診斷脂肪肝之嚴重程度。