Applicaiton Required

H11-M23_弱監督式深度學習方法之分割方法

Common bile duct (CBD) stones caused diseases are life-threatening. Because CBD stones locate in the distal part of the CBD and have relatively small sizes, detecting CBD stones from CT scans is a challenging issue in the medical domain. Methods and procedures: We propose a deep learning based weakly-supervised method called multiple field-of-view based attention driven network (MFADNet) to detect CBD stones from CT scans based on image-level labels. Three dominant modules including a multiple field-of-view encoder, an attention driven decoder and a classification network are collaborated in the network. The encoder learns the feature of multi-scale contextual information while the decoder with the classification network is applied to locate the CBD stones based on spatial-channel attentions. To drive the learning of the whole network in a weakly-supervised and end-to-end trainable manner, four losses including the foreground loss, background loss, consistency loss and classification loss are proposed. Results: Compared with state-of-the-art weakly-supervised methods in the experiments, the proposed method can accurately classify and locate CBD stones based on the quantitative and qualitative results. Conclusion: We propose a novel multiple field-of-view based attention driven network for a new medical application of CBD stone detection from CT scans while only image-levels are required to reduce the burdens of labeling and help physicians automatically diagnose CBD stones. Clinical impact: Our deep learning method can help physicians localize relatively small CBD stones for effectively diagnosing CBD stone caused diseases.

Citation

Y. -H. Chang, M. -Y. Lin, M. -T. Hsieh, M. -C. Ou, C. -R. Huang and B. -S. Sheu, "Multiple Field-of-View Based Attention Driven Network for Weakly Supervised Common Bile Duct Stone Detection," in IEEE Journal of Translational Engineering in Health and Medicine, vol. 11, pp. 394-404, 2023, doi: 10.1109/JTEHM.2023.3286423.

Acknowledgements

This work was supported in part by the National Science and Technology Council, Taiwan under Grant NSTC 111-2634-F-006-012. We thank to National Center for High-performance Computing (NCHC) for providing computational and storage resources.

データとリソース

追加情報

フィールド
ソース https://github.com/nchucvml/MFADNet
作成者 Ya-Han Chang
メンテナー 丁維德
バージョン 1.0, 2022/07/11
最終更新 10月 11, 2023, 17:45 (CST)
作成日 7月 11, 2023, 15:16 (CST)

推薦資料集:


  • 新北市旅館民宿業者(韓文)

    Payment instrument Free
    Update frequency Irregular
    提供新北市觀光旅遊網中的旅館民宿業資料,包含旅館民宿店家的名稱、簡介、電話、地址、座標等資料(韓文)
  • 臺中市政府警察局各(大)隊、科、室、中心服務據點

    Payment instrument Free
    Update frequency Irregular
    臺中市政府警察局各(大)隊、科、室、中心服務據點及聯絡電話
  • 經濟部中部辦公室_公司登記資料影像建檔勞務委外

    Payment instrument Free
    Update frequency Irregular
    有關本辦公室公司登記資料影像建檔勞務委外(40萬頁),各項契約文件及效力、履約標的、契約價金之給付、契約價金之調整、契約價金之給付條件、稅捐、履約期限、履約管理(轉包及分包等各項規定)、履約標的品管、保險、保證金、驗收、遲延履約、權利及責任、契約變更及轉讓、契約終止解除及暫停執行、爭議處理、其他如配合行政院所屬各機關組織及業務調整,現有機關名稱變更時,...
  • 105年度桃園區新舊建號對照資料

    Payment instrument Free
    Update frequency Irregular
    桃園區歷年因重測業務之新舊建號對照資料(截至104年底止)
  • 蒙藏文化中心臉書瀏覽人數統計表

    Payment instrument Free
    Update frequency Irregular
    蒙藏文化中心臉書瀏覽人數統計表