Applicaiton Required

H11-M23_弱監督式深度學習方法之分割方法

Common bile duct (CBD) stones caused diseases are life-threatening. Because CBD stones locate in the distal part of the CBD and have relatively small sizes, detecting CBD stones from CT scans is a challenging issue in the medical domain. Methods and procedures: We propose a deep learning based weakly-supervised method called multiple field-of-view based attention driven network (MFADNet) to detect CBD stones from CT scans based on image-level labels. Three dominant modules including a multiple field-of-view encoder, an attention driven decoder and a classification network are collaborated in the network. The encoder learns the feature of multi-scale contextual information while the decoder with the classification network is applied to locate the CBD stones based on spatial-channel attentions. To drive the learning of the whole network in a weakly-supervised and end-to-end trainable manner, four losses including the foreground loss, background loss, consistency loss and classification loss are proposed. Results: Compared with state-of-the-art weakly-supervised methods in the experiments, the proposed method can accurately classify and locate CBD stones based on the quantitative and qualitative results. Conclusion: We propose a novel multiple field-of-view based attention driven network for a new medical application of CBD stone detection from CT scans while only image-levels are required to reduce the burdens of labeling and help physicians automatically diagnose CBD stones. Clinical impact: Our deep learning method can help physicians localize relatively small CBD stones for effectively diagnosing CBD stone caused diseases.

Citation

Y. -H. Chang, M. -Y. Lin, M. -T. Hsieh, M. -C. Ou, C. -R. Huang and B. -S. Sheu, "Multiple Field-of-View Based Attention Driven Network for Weakly Supervised Common Bile Duct Stone Detection," in IEEE Journal of Translational Engineering in Health and Medicine, vol. 11, pp. 394-404, 2023, doi: 10.1109/JTEHM.2023.3286423.

Acknowledgements

This work was supported in part by the National Science and Technology Council, Taiwan under Grant NSTC 111-2634-F-006-012. We thank to National Center for High-performance Computing (NCHC) for providing computational and storage resources.

データとリソース

追加情報

フィールド
ソース https://github.com/nchucvml/MFADNet
作成者 Ya-Han Chang
メンテナー 丁維德
バージョン 1.0, 2022/07/11
最終更新 10月 11, 2023, 17:45 (CST)
作成日 7月 11, 2023, 15:16 (CST)

推薦資料集:


  • 105年度新北市附屬單位預算營業基金盈虧撥補綜計表(依撥補項目分列)(法定)

    Payment instrument Free
    Update frequency Irregular
    1.105年度新北市附屬單位預算營業基金盈虧撥補綜計表(依撥補項目分列)(法定) 2.單位:新臺幣千元 3.各項欄位說明詳參""新北市政府主計處網頁->附屬單位預算及綜計表->105年度附屬單位法定預算""( http://www.bas.ntpc.gov.tw/download/?type_id=10618)或電洽主計處查詢。
  • 109年12月花蓮縣土地增值稅徵收

    Payment instrument Free
    Update frequency Irregular
    109年花蓮縣土地增值稅徵收
  • 固定通信綜合網路業務營運概況統計表

    Payment instrument Free
    Update frequency Irregular
    各業者市內網路、長途網路、國際網路營業收入等統計資料
  • 新竹縣政府稅務局108年1月至6月辦理國家賠償事件處理情形統計表

    Payment instrument Free
    Update frequency Irregular
    108年1月至6月國家賠償案件統計表
  • 106年度臺中市地方總預算附屬單位預算及綜計表(法定預算)-作業基金-餘絀撥補綜計表(依撥補項目分列)

    Payment instrument Free
    Update frequency Irregular
    106年度臺中市地方總預算附屬單位預算及綜計表(法定預算)-作業基金-餘絀撥補綜計表(依撥補項目分列)