Applicaiton Required

H11-M23_弱監督式深度學習方法之分割方法

Common bile duct (CBD) stones caused diseases are life-threatening. Because CBD stones locate in the distal part of the CBD and have relatively small sizes, detecting CBD stones from CT scans is a challenging issue in the medical domain. Methods and procedures: We propose a deep learning based weakly-supervised method called multiple field-of-view based attention driven network (MFADNet) to detect CBD stones from CT scans based on image-level labels. Three dominant modules including a multiple field-of-view encoder, an attention driven decoder and a classification network are collaborated in the network. The encoder learns the feature of multi-scale contextual information while the decoder with the classification network is applied to locate the CBD stones based on spatial-channel attentions. To drive the learning of the whole network in a weakly-supervised and end-to-end trainable manner, four losses including the foreground loss, background loss, consistency loss and classification loss are proposed. Results: Compared with state-of-the-art weakly-supervised methods in the experiments, the proposed method can accurately classify and locate CBD stones based on the quantitative and qualitative results. Conclusion: We propose a novel multiple field-of-view based attention driven network for a new medical application of CBD stone detection from CT scans while only image-levels are required to reduce the burdens of labeling and help physicians automatically diagnose CBD stones. Clinical impact: Our deep learning method can help physicians localize relatively small CBD stones for effectively diagnosing CBD stone caused diseases.

Citation

Y. -H. Chang, M. -Y. Lin, M. -T. Hsieh, M. -C. Ou, C. -R. Huang and B. -S. Sheu, "Multiple Field-of-View Based Attention Driven Network for Weakly Supervised Common Bile Duct Stone Detection," in IEEE Journal of Translational Engineering in Health and Medicine, vol. 11, pp. 394-404, 2023, doi: 10.1109/JTEHM.2023.3286423.

Acknowledgements

This work was supported in part by the National Science and Technology Council, Taiwan under Grant NSTC 111-2634-F-006-012. We thank to National Center for High-performance Computing (NCHC) for providing computational and storage resources.

データとリソース

追加情報

フィールド
ソース https://github.com/nchucvml/MFADNet
作成者 Ya-Han Chang
メンテナー 丁維德
バージョン 1.0, 2022/07/11
最終更新 10月 11, 2023, 17:45 (CST)
作成日 7月 11, 2023, 15:16 (CST)

推薦資料集:


  • Applicaiton Required

    2015年福爾摩沙衛星二號 L1A 台東

    Payment instrument Free
    Update frequency Irregular
    此資料集為非公開資料,需由 TASA 進行資料審核。 欲申請者,請進入資料集後點選右上方「申請」填寫申請單;申請前請先登入系統。 若尚無平台帳號,請至 https://scidm.nchc.org.tw/user/register 進行註冊
  • 109年屏東縣地價稅查定稅源統計分析表

    Payment instrument Free
    Update frequency Irregular
    109年屏東縣地價稅查定稅源統計分析表
  • 109年度臺東縣臨時暨短期照顧服務提供單位

    Payment instrument Free
    Update frequency Irregular
    109年度臺東縣智慧福利服務躍升計畫OpenData資料收集
  • 新北市危險水域-瑞芳區

    Payment instrument Free
    Update frequency Irregular
    新北市政府消防局提供您危險水域,提醒您出遊時要小心遠離危險提供的欄位包含了編號、行政區、危險水域地點-瑞芳區
  • 105年度新北市總預算歲出政事別預算總表

    Payment instrument Free
    Update frequency Irregular
    1.105年度新北市總預算歲出政事別預算總表。 2.單位:新臺幣千元。 3.完整資料詳參""新北市政府主計處網頁->總預算->105年度法定預算""(http://www.bas.ntpc.gov.tw/download/?mode=edit&type_id=10171)或電洽主計處查詢。