-
需申請審核 H11-M122_聯邦學習中處理組織病理學資料異質性的染色對齊
更新頻率 不定期 瀏覽次數 180 下載次數 0利用擴散模型將各客戶端的資料分布進行對齊,以降低組織病理學資料的異質性對於聯邦學習的衝擊 -
需申請審核 H11-M01_數位病理全玻片影像二元分類器
更新頻率 不定期 瀏覽次數 2707 下載次數 7Abstract we propose, RankMix, a data augmentation method of mixing ranked features in a pair of WSIs. RankMix introduces the concepts of pseudo labeling and ranking in order to... -
需申請審核 H11-M110_Domain Generalization with Background Consistency and Texture Reduct...
更新頻率 不定期 瀏覽次數 1521 下載次數 2使用監督式學習訓練之肝細胞核分割模型,利用抗背景擾動一致性和紋理縮減的集合模型強化模型擷取影像特徵能力,以提升辨識準確性與Robustness -
需申請審核 H11-M103_基於對比式聚類之胰臟腺癌不精確標注弱監督分割模型
更新頻率 不定期 瀏覽次數 1357 下載次數 3使用對比式聚類的弱監督學習方式,從不精確標註資料取得更詳細的標註資訊,透過區塊方式訓練胰臟管線癌的辨識模型。模型會以影像分割方式取得胰臟腺癌區域。
您也可以使用API (應用程式介面) (see API 文件)註冊。