需申請審核

H11-M23_弱監督式深度學習方法之分割方法

Common bile duct (CBD) stones caused diseases are life-threatening. Because CBD stones locate in the distal part of the CBD and have relatively small sizes, detecting CBD stones from CT scans is a challenging issue in the medical domain. Methods and procedures: We propose a deep learning based weakly-supervised method called multiple field-of-view based attention driven network (MFADNet) to detect CBD stones from CT scans based on image-level labels. Three dominant modules including a multiple field-of-view encoder, an attention driven decoder and a classification network are collaborated in the network. The encoder learns the feature of multi-scale contextual information while the decoder with the classification network is applied to locate the CBD stones based on spatial-channel attentions. To drive the learning of the whole network in a weakly-supervised and end-to-end trainable manner, four losses including the foreground loss, background loss, consistency loss and classification loss are proposed. Results: Compared with state-of-the-art weakly-supervised methods in the experiments, the proposed method can accurately classify and locate CBD stones based on the quantitative and qualitative results. Conclusion: We propose a novel multiple field-of-view based attention driven network for a new medical application of CBD stone detection from CT scans while only image-levels are required to reduce the burdens of labeling and help physicians automatically diagnose CBD stones. Clinical impact: Our deep learning method can help physicians localize relatively small CBD stones for effectively diagnosing CBD stone caused diseases.

Citation

Y. -H. Chang, M. -Y. Lin, M. -T. Hsieh, M. -C. Ou, C. -R. Huang and B. -S. Sheu, "Multiple Field-of-View Based Attention Driven Network for Weakly Supervised Common Bile Duct Stone Detection," in IEEE Journal of Translational Engineering in Health and Medicine, vol. 11, pp. 394-404, 2023, doi: 10.1109/JTEHM.2023.3286423.

Acknowledgements

This work was supported in part by the National Science and Technology Council, Taiwan under Grant NSTC 111-2634-F-006-012. We thank to National Center for High-performance Computing (NCHC) for providing computational and storage resources.

資料與資源

額外的資訊

欄位
來源 https://github.com/nchucvml/MFADNet
作者 Ya-Han Chang
維護者 丁維德
版本 1.0, 2022/07/11
最後更新 十月 11, 2023, 17:45 (CST)
建立 七月 11, 2023, 15:16 (CST)

推薦資料集:


  • 地區年齡性別統計表-多重抗藥性結核病(以週為單位)

    付費方式 免費
    更新頻率 不定期
    2003年起各地區、各年齡層、性別之病例數統計表(疾病名稱:多重抗藥性結核病,日期種類:發病日,病例種類:確定病例,感染來源:本土、境外移入)
  • 每年新北市A2交通事故原因及死傷人數

    付費方式 免費
    更新頻率 不定期
    一、統計範圍及對象:凡於新北市區內道路上發生之交通事故,為統計範圍及對象。(一)必須因汽機車或動力機械行駛而引起之事故。 (二)必須發生於道路上之事故。 (三)非死亡。(即符合道路交通事故調查報告A2) 二、統計標準時間:以每年所發生之事實為準。 三、分類標準:按肇事原因、死傷人數分類。 四、統計科目定義:...
  • 108年1月至6月花蓮縣違章漏稅案件處理及財務罰鍰執行情形3-2

    付費方式 免費
    更新頻率 不定期
    108年違章漏稅案件處理及財務罰鍰執行情形上半年報3-2
  • insight_test_24468

    付費方式 免費
    更新頻率 不定期
  • 需申請審核

    NaF Prostate

    付費方式 免費
    更新頻率 不定期
    This is a collection of F-18 NaF positron emission tomography/computed tomography (PET/CT) images in patients with prostate cancer, with suspected or known bone involvement....