需申請審核

CBIS-DDSM

Breast Cancer

This CBIS-DDSM (Curated Breast Imaging Subset of DDSM) is an updated and standardized version of the Digital Database for Screening Mammography (DDSM). The DDSM is a database of 2,620 scanned film mammography studies. It contains normal, benign, and malignant cases with verified pathology information. The scale of the database along with ground truth validation makes the DDSM a useful tool in the development and testing of decision support systems. The CBIS-DDSM collection includes a subset of the DDSM data selected and curated by a trained mammographer. The images have been decompressed and converted to DICOM format. Updated ROI segmentation and bounding boxes, and pathologic diagnosis for training data are also included. Published research results from work in developing decision support systems in mammography are difficult to replicate due to the lack of a standard evaluation data set; most computer-aided diagnosis (CADx) and detection (CADe) algorithms for breast cancer in mammography are evaluated on private data sets or on unspecified subsets of public databases. Few well-curated public datasets have been provided for the mammography community. These include the DDSM, the Mammographic Imaging Analysis Society (MIAS) database, and the Image Retrieval in Medical Applications (IRMA) project. Although these public data sets are useful, they are limited in terms of data set size and accessibility.

For example, most researchers using the DDSM do not leverage all its images for a variety of historical reasons. When the database was released in 1997, computational resources to process hundreds or thousands of images were not widely available. Additionally, the DDSM images are saved in non-standard compression files that require the use of decompression code that has not been updated or maintained for modern computers. Finally, the ROI annotations for the abnormalities in the DDSM were provided to indicate a general position of lesions, but not a precise segmentation for them. Therefore, many researchers must implement segmentation algorithms for accurate feature extraction. This causes an inability to directly compare the performance of methods or to replicate prior results. The CBIS-DDSM collection addresses that challenge by publicly releasing an curated and standardized version of the DDSM for evaluation of future CADx and CADe systems (sometimes referred to generally as CAD) research in mammography.

For scientific inquiries about this dataset, please contact Dr. Daniel Rubin, Department of Biomedical Data Science, Radiology, and Medicine, Stanford University School of Medicine (dlrubin@stanford.edu). A manuscript describing the dataset in detail is under review in Scientific Data and will be linked here when published.

資料與資源

額外的資訊

欄位
最後更新 十二月 3, 2019, 11:32 (CST)
建立 五月 30, 2018, 16:17 (CST)

推薦資料集:


  • 「金融卡-交易類別(餘額查詢/提款/轉帳/繳費/繳稅)」結構比統計(月報)

    付費方式 免費
    更新頻率 不定期
    提供民眾查詢金融卡交易依交易類別月統計資訊(財金資訊公司)
  • 彰化縣建築師開業家數及人數

    付費方式 免費
    更新頻率 不定期
    彰化縣建築師開業家數及人數
  • 役男免役禁役緩徵處理情形統計表

    付費方式 免費
    更新頻率 不定期
    應受徵集之役齡男子,經徵兵檢查判定為免役體位者,依法核定免役;役男曾判處5年以上有期徒刑或執行有期徒刑在監合計滿3年者,禁服兵役;另役男凡就學、犯罪追訴或處徒刑在執行中,倘渠等符合免役禁役緩徵緩召實施辦法之規定,得予緩徵。
  • 臺北市公有超級市場

    付費方式 免費
    更新頻率 不定期
    臺北市公有超級市場時間數列統計資料
  • 臺灣銀行基金收費標準

    付費方式 免費
    更新頻率 不定期
    提供民眾向臺灣銀行購買基金之手續費標準