需申請審核

H11-M26_基於用戶回饋資訊之分散式動態訓練策略

Abstract

Federated learning provides a decentralized learning without data exchange. Among them, the Federated Average (FedAVG) framework is the most likely to be implemented in real world application due to its low communication overhead. However, this architecture can easily affect the efficiency of global model convergence when there are differences data distribution in individual user. Therefore, in this paper, we propose an aggregation strategy called significant Weighted feature aggregation method, in which the features with large variation are appropriately weighted at the server side to improve the model convergence speed even in not identically and independently distributed (non-iid) environments. As shown in our experiments, our approach had over 10% of improvements compared to the FedAVG.

Keywords

deep learning, distribution system, federated learning

資料與資源

額外的資訊

欄位
作者 楊惟中
維護者 羅梅爾
最後更新 十月 4, 2023, 09:57 (CST)
建立 七月 11, 2023, 11:04 (CST)

推薦資料集:


  • 綜合所得稅繳納基本稅額單位各項核定申報歸戶比較10分位申報統計表

    付費方式 免費
    更新頻率 不定期
    綜合所得稅繳納基本稅額單位各項核定申報歸戶比較10分位申報統計表 單位:金額(千元)
  • 需申請審核

    TCGA-CESC

    付費方式 免費
    更新頻率 不定期
    The Cancer Genome Atlas Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma (TCGA-CESC) data collection is part of a larger effort to build a research community...
  • 新竹市殯葬管理所納骨堂使用人次統計表110年度

    付費方式 免費
    更新頻率 不定期
    納骨堂使用人次統計表
  • 臺南市公共管線圖資-共同管道管線

    付費方式 免費
    更新頻率 不定期
    提供臺南市公共管線圖資-共同管道管線,包含全市37區道路範圍圖資。 公共管線圖資係由轄區管線單位提供,其圖資僅供參考,如需取得詳細資料,仍須跟各管線單位洽詢。
  • insight_test_14846

    付費方式 免費
    更新頻率 不定期