Applicaiton Required

H11-M26_基於用戶回饋資訊之分散式動態訓練策略

Abstract

Federated learning provides a decentralized learning without data exchange. Among them, the Federated Average (FedAVG) framework is the most likely to be implemented in real world application due to its low communication overhead. However, this architecture can easily affect the efficiency of global model convergence when there are differences data distribution in individual user. Therefore, in this paper, we propose an aggregation strategy called significant Weighted feature aggregation method, in which the features with large variation are appropriately weighted at the server side to improve the model convergence speed even in not identically and independently distributed (non-iid) environments. As shown in our experiments, our approach had over 10% of improvements compared to the FedAVG.

Keywords

deep learning, distribution system, federated learning

Data and Resources

Additional Info

Field Value
Author 楊惟中
Maintainer 羅梅爾
Last Updated October 4, 2023, 09:57 (CST)
Created July 11, 2023, 11:04 (CST)

推薦資料集:


  • 綜合所得稅各項已繳及應補退稅戶數金額各級距申報統計表-縣市別:臺中市

    Payment instrument Free
    Update frequency Irregular
    綜合所得稅各項已繳及應補退稅戶數金額各級距申報統計表-縣市別:臺中市 單位:金額(千元)
  • 國外公害糾紛司法案件資料

    Payment instrument Free
    Update frequency Irregular
    提供一般民眾查詢國外公害糾紛司法案件資料
  • 嘉義市資源回收商名單

    Payment instrument Free
    Update frequency Irregular
    嘉義市資源回收商名單
  • 高雄市橋頭區109年公告土地現值

    Payment instrument Free
    Update frequency Irregular
    109年-高雄市橋頭區公告土地現值
  • 台灣電力公司_各年度再生能源別裝置容量

    Payment instrument Free
    Update frequency Irregular
    按年度統計台電之再生能源發電,其各種能源別之裝置容量; 註: 1.再生能源發展條例係於98年7月8日公告施行。 2.上述資料皆含台電公司自有機組裝置容量。 3.風力及太陽光電以外能源〔如水力(包括水庫電廠)、生質能等〕之裝置容量,皆歸於其他(含水力)項目內。