Applicaiton Required

H11-M26_基於用戶回饋資訊之分散式動態訓練策略

Abstract

Federated learning provides a decentralized learning without data exchange. Among them, the Federated Average (FedAVG) framework is the most likely to be implemented in real world application due to its low communication overhead. However, this architecture can easily affect the efficiency of global model convergence when there are differences data distribution in individual user. Therefore, in this paper, we propose an aggregation strategy called significant Weighted feature aggregation method, in which the features with large variation are appropriately weighted at the server side to improve the model convergence speed even in not identically and independently distributed (non-iid) environments. As shown in our experiments, our approach had over 10% of improvements compared to the FedAVG.

Keywords

deep learning, distribution system, federated learning

Data and Resources

Additional Info

Field Value
Author 楊惟中
Maintainer 羅梅爾
Last Updated October 4, 2023, 09:57 (CST)
Created July 11, 2023, 11:04 (CST)

推薦資料集:


  • insight_test_27026

    Payment instrument Free
    Update frequency Irregular
  • 110年4月份高雄市疫病蟲害主動調查監測-瓜實蠅蟲數資料表

    Payment instrument Free
    Update frequency Irregular
    110年4月份高雄市疫病蟲害主動調查監測瓜實蠅蟲數資料
  • 水利署_施政計畫

    Payment instrument Free
    Update frequency Irregular
    本資料內容係提供水利署施政計畫,包含重要河川環境營造計畫、海岸環境營造計畫及區域排水整治及環境營造計畫,說明約略含括計畫緣起(依據、未來環境預測、問題評析)、計畫目標(目標說明、達成目標之限制、預期績效指標及評估基準)、現行相關政策及方案之檢討(現行政策、改進策略建議)、執行策略方法(執行策略、主要工作、分年執行策略、執行步驟與分工)、期程與資源需求(...
  • 海關關艇資料

    Payment instrument Free
    Update frequency Irregular
    提供海關關艇資料
  • 107年高雄市公告土地現值

    Payment instrument Free
    Update frequency Irregular
    提供107年高雄市公告土地現值