Applicaiton Required

H11-M26_基於用戶回饋資訊之分散式動態訓練策略

Abstract

Federated learning provides a decentralized learning without data exchange. Among them, the Federated Average (FedAVG) framework is the most likely to be implemented in real world application due to its low communication overhead. However, this architecture can easily affect the efficiency of global model convergence when there are differences data distribution in individual user. Therefore, in this paper, we propose an aggregation strategy called significant Weighted feature aggregation method, in which the features with large variation are appropriately weighted at the server side to improve the model convergence speed even in not identically and independently distributed (non-iid) environments. As shown in our experiments, our approach had over 10% of improvements compared to the FedAVG.

Keywords

deep learning, distribution system, federated learning

Data and Resources

Additional Info

Field Value
Author 楊惟中
Maintainer 羅梅爾
Last Updated October 4, 2023, 09:57 (CST)
Created July 11, 2023, 11:04 (CST)

推薦資料集:


  • 內政部空中勤務總隊執行國土綜合規劃空勘航攝任務成效統計表

    Payment instrument Free
    Update frequency Irregular
    勤務項目_月份、01月、02月、03月、04月、05月、06月、07月、08月、09月、10月、11月、12月、合計
  • 臺中市政府警察局100年12月份交通事故資料

    Payment instrument Free
    Update frequency Irregular
    本局100年12月份交通事故資料
  • 水產試驗所漁業問答

    Payment instrument Free
    Update frequency Irregular
    提供資料包括:標題、連結、回答、公佈日期等欄位資訊。
  • 原住民族音樂專輯介紹

    Payment instrument Free
    Update frequency Irregular
    2011年台灣原住民族文化產業年報介紹之音樂專輯清單。
  • 106年度行政院農業委員會漁業署及所屬單位決算

    Payment instrument Free
    Update frequency Irregular
    提供106年度行政院農業委員會漁業署及所屬單位決算。