Applicaiton Required

H11-M26_基於用戶回饋資訊之分散式動態訓練策略

Abstract

Federated learning provides a decentralized learning without data exchange. Among them, the Federated Average (FedAVG) framework is the most likely to be implemented in real world application due to its low communication overhead. However, this architecture can easily affect the efficiency of global model convergence when there are differences data distribution in individual user. Therefore, in this paper, we propose an aggregation strategy called significant Weighted feature aggregation method, in which the features with large variation are appropriately weighted at the server side to improve the model convergence speed even in not identically and independently distributed (non-iid) environments. As shown in our experiments, our approach had over 10% of improvements compared to the FedAVG.

Keywords

deep learning, distribution system, federated learning

データとリソース

追加情報

フィールド
作成者 楊惟中
メンテナー 羅梅爾
最終更新 10月 4, 2023, 09:57 (CST)
作成日 7月 11, 2023, 11:04 (CST)

推薦資料集:


  • 臺東縣池上鄉合法地政士開業資料

    Payment instrument Free
    Update frequency Irregular
    臺東縣池上鄉合法地政士開業資料
  • 新北市銀髮俱樂部-淡水區

    Payment instrument Free
    Update frequency Irregular
    社會局提供的新北市銀髮俱樂部據點-淡水區
  • 新北市管區域排水資訊-深坑區

    Payment instrument Free
    Update frequency Irregular
    區域排水:是指容納兩種類型以上之較大型排水,是屬於地區性排水,最後再匯入河川。 -深坑區
  • 新北市環境用藥販賣業者名單

    Payment instrument Free
    Update frequency Irregular
    新北市內合格設置的環境用藥販賣業者名單
  • 火災事件資料

    Payment instrument Free
    Update frequency Irregular
    參照美國開放之Fire incident case data每年提供全國火災事件資料