Applicaiton Required

H11-M26_基於用戶回饋資訊之分散式動態訓練策略

Abstract

Federated learning provides a decentralized learning without data exchange. Among them, the Federated Average (FedAVG) framework is the most likely to be implemented in real world application due to its low communication overhead. However, this architecture can easily affect the efficiency of global model convergence when there are differences data distribution in individual user. Therefore, in this paper, we propose an aggregation strategy called significant Weighted feature aggregation method, in which the features with large variation are appropriately weighted at the server side to improve the model convergence speed even in not identically and independently distributed (non-iid) environments. As shown in our experiments, our approach had over 10% of improvements compared to the FedAVG.

Keywords

deep learning, distribution system, federated learning

データとリソース

追加情報

フィールド
作成者 楊惟中
メンテナー 羅梅爾
最終更新 10月 4, 2023, 09:57 (CST)
作成日 7月 11, 2023, 11:04 (CST)

推薦資料集:


  • insight_test_26733

    Payment instrument Free
    Update frequency Irregular
  • 嘉義市居家復健提供單位

    Payment instrument Free
    Update frequency Irregular
    嘉義市居家復健提供單位
  • 遊說法

    Payment instrument Free
    Update frequency Irregular
    遊說法簡介、問答集及相關書表
  • 臺中市各行政區房屋稅實徵數趨勢表

    Payment instrument Free
    Update frequency Irregular
    臺中市各行政區房屋稅實徵數趨勢表
  • 新北市政府警察局104違反社會秩序維護法件數人數

    Payment instrument Free
    Update frequency Irregular
    新北市政府警察局104違反社會秩序維護法件數人數