Applicaiton Required

H11-M26_基於用戶回饋資訊之分散式動態訓練策略

Abstract

Federated learning provides a decentralized learning without data exchange. Among them, the Federated Average (FedAVG) framework is the most likely to be implemented in real world application due to its low communication overhead. However, this architecture can easily affect the efficiency of global model convergence when there are differences data distribution in individual user. Therefore, in this paper, we propose an aggregation strategy called significant Weighted feature aggregation method, in which the features with large variation are appropriately weighted at the server side to improve the model convergence speed even in not identically and independently distributed (non-iid) environments. As shown in our experiments, our approach had over 10% of improvements compared to the FedAVG.

Keywords

deep learning, distribution system, federated learning

データとリソース

追加情報

フィールド
作成者 楊惟中
メンテナー 羅梅爾
最終更新 10月 4, 2023, 09:57 (CST)
作成日 7月 11, 2023, 11:04 (CST)

推薦資料集:


  • 新北市成人預防保健醫事機構-石碇區

    Payment instrument Free
    Update frequency Irregular
    新北市成人預防保健醫事機構清冊-石碇區
  • AI CUP 2022農地作物現況調查影像辨識競賽-秋季賽_非作物影像訓練資料集

    Payment instrument Free
    Update frequency Irregular
    用於AI CUP 2022農地作物現況調查影像辨識競賽-秋季賽之訓練資料集,影像資訊來源為行政院農業委員會。
  • 106年度行政院農業委員會高雄區農業改良場單位預算

    Payment instrument Free
    Update frequency Irregular
    提供106年度行政院農業委員會高雄區農業改良場單位預算
  • 109年臺東縣非都市土地變更編定筆數及面積-卑南鄉

    Payment instrument Free
    Update frequency Irregular
    109年臺東縣非都市土地變更編定筆數及面積(卑南鄉)
  • 110年4月花蓮縣土石採取景觀維護特別稅徵績表

    Payment instrument Free
    Update frequency Irregular
    花蓮縣土石採取景觀維護特別稅徵績表