Applicaiton Required

H11-M26_基於用戶回饋資訊之分散式動態訓練策略

Abstract

Federated learning provides a decentralized learning without data exchange. Among them, the Federated Average (FedAVG) framework is the most likely to be implemented in real world application due to its low communication overhead. However, this architecture can easily affect the efficiency of global model convergence when there are differences data distribution in individual user. Therefore, in this paper, we propose an aggregation strategy called significant Weighted feature aggregation method, in which the features with large variation are appropriately weighted at the server side to improve the model convergence speed even in not identically and independently distributed (non-iid) environments. As shown in our experiments, our approach had over 10% of improvements compared to the FedAVG.

Keywords

deep learning, distribution system, federated learning

データとリソース

追加情報

フィールド
作成者 楊惟中
メンテナー 羅梅爾
最終更新 2023年10月4日, 午前1時57分 (UTC+00:00)
作成日 2023年7月11日, 午前3時4分 (UTC+00:00)

推薦資料集:


  • 新北市綠色商店-深坑區

    Payment instrument Free
    Update frequency Irregular
    新北市綠色商店。-深坑區
  • 台灣自來水公司通過環境影響評估

    Payment instrument Free
    Update frequency Irregular
    台灣自來水公司目前通過環境影響評估相關作業
  • 102年桃園市土地公告現值及公告地價-龜山

    Payment instrument Free
    Update frequency Irregular
    102年桃園市土地公告現值及公告地價
  • 新竹市寬頻管道建置計劃資料

    Payment instrument Free
    Update frequency Irregular
    新竹市寬頻管道建置完成路段
  • 新北市政府警察局及其所屬預算表-保安警察大隊

    Payment instrument Free
    Update frequency Irregular
    新北市政府警察局及其所屬預算表-保安警察大隊