Applicaiton Required

H11-M26_基於用戶回饋資訊之分散式動態訓練策略

Abstract

Federated learning provides a decentralized learning without data exchange. Among them, the Federated Average (FedAVG) framework is the most likely to be implemented in real world application due to its low communication overhead. However, this architecture can easily affect the efficiency of global model convergence when there are differences data distribution in individual user. Therefore, in this paper, we propose an aggregation strategy called significant Weighted feature aggregation method, in which the features with large variation are appropriately weighted at the server side to improve the model convergence speed even in not identically and independently distributed (non-iid) environments. As shown in our experiments, our approach had over 10% of improvements compared to the FedAVG.

Keywords

deep learning, distribution system, federated learning

データとリソース

追加情報

フィールド
作成者 楊惟中
メンテナー 羅梅爾
最終更新 10月 4, 2023, 09:57 (CST)
作成日 7月 11, 2023, 11:04 (CST)

推薦資料集:


  • 臺南市政府道路挖掘案件資料

    Payment instrument Free
    Update frequency Irregular
    提供臺南市境內道路挖掘案件資料,相關資訊網站 https://diggis.tainan.gov.tw/TNRoad/
  • 高雄市109年空氣污染物連續自動監測設施(CEMS)

    Payment instrument Free
    Update frequency Irregular
    109年空氣污染物連續自動監測設施(CEMS) 工廠管制編號,煙囪,監測項目,時間,測值,狀態碼 參考資料: 空氣污染物工廠名單(CEMS) 、 空氣污染物項目代碼表(CEMS)
  • 健保用藥品項查詢項目檔

    Payment instrument Free
    Update frequency Irregular
    提供全民健康保險藥物給付項目及支付標準收載藥品之給付、給付時間及成分中英文名稱廠商等資料。
  • 契稅稅源統計月報表-10212

    Payment instrument Free
    Update frequency Irregular
    提供本市各行政區102年1月起每月之契稅稅源統計資料-10212
  • 陸軍通資半年刊

    Payment instrument Free
    Update frequency Irregular
    提供陸軍通資相關文章