Applicaiton Required

H11-M26_基於用戶回饋資訊之分散式動態訓練策略

Abstract

Federated learning provides a decentralized learning without data exchange. Among them, the Federated Average (FedAVG) framework is the most likely to be implemented in real world application due to its low communication overhead. However, this architecture can easily affect the efficiency of global model convergence when there are differences data distribution in individual user. Therefore, in this paper, we propose an aggregation strategy called significant Weighted feature aggregation method, in which the features with large variation are appropriately weighted at the server side to improve the model convergence speed even in not identically and independently distributed (non-iid) environments. As shown in our experiments, our approach had over 10% of improvements compared to the FedAVG.

Keywords

deep learning, distribution system, federated learning

データとリソース

追加情報

フィールド
作成者 楊惟中
メンテナー 羅梅爾
最終更新 2023年10月4日, 午前1時57分 (UTC+00:00)
作成日 2023年7月11日, 午前3時4分 (UTC+00:00)

推薦資料集:


  • 109年10月份高雄市疫病蟲害主動調查監測-瓜實蠅蟲數資料表

    Payment instrument Free
    Update frequency Irregular
    109年10月份-高雄市疫病蟲害主動調查監測-瓜實蠅蟲數資料表
  • 歷年65歲以上老人過去一星期從事運動比率

    Payment instrument Free
    Update frequency Irregular
    資料來源:本署健康危害行為監測調查。 備註:百分比經加權調整。 Source:Behavior Risk Factor Surveillance System. Note:All percentage were weighted.
  • 農藥殘留容許量標準_得免訂定容許量之農藥一覽表

    Payment instrument Free
    Update frequency Irregular
    正面表列得免訂定容許量之農藥。
  • insight_test_14953

    Payment instrument Free
    Update frequency Irregular
  • 園區群聚的產業別及廠商名稱

    Payment instrument Free
    Update frequency Irregular
    加工出口區建構完善投資環境,深化各園區之群聚發展,發揮特色產業聚落之加值效益,引進優質廠商,加速產業升級轉型,楠梓園區為半導體封裝測試產業園區