Applicaiton Required

H11-M26_基於用戶回饋資訊之分散式動態訓練策略

Abstract

Federated learning provides a decentralized learning without data exchange. Among them, the Federated Average (FedAVG) framework is the most likely to be implemented in real world application due to its low communication overhead. However, this architecture can easily affect the efficiency of global model convergence when there are differences data distribution in individual user. Therefore, in this paper, we propose an aggregation strategy called significant Weighted feature aggregation method, in which the features with large variation are appropriately weighted at the server side to improve the model convergence speed even in not identically and independently distributed (non-iid) environments. As shown in our experiments, our approach had over 10% of improvements compared to the FedAVG.

Keywords

deep learning, distribution system, federated learning

データとリソース

追加情報

フィールド
作成者 楊惟中
メンテナー 羅梅爾
最終更新 10月 4, 2023, 09:57 (CST)
作成日 7月 11, 2023, 11:04 (CST)

推薦資料集:


  • 各公所列管都市公園綠地清冊

    Payment instrument Free
    Update frequency Irregular
    嘉義縣都市公園綠地統計表
  • 工程會列管公共建設計畫各主辦機關年度預算執行情形統計表

    Payment instrument Free
    Update frequency Irregular
    提供當年度工程會列管公共建設計畫各主辦機關年度預算執行情形統計資料。
  • 花蓮縣航空噪音防制區*

    Payment instrument Free
    Update frequency Irregular
    花蓮縣航空噪音防制區*
  • 新北市旅館民宿業者(英文-106年更新)

    Payment instrument Free
    Update frequency Irregular
    提供新北市觀光旅遊網中的旅館民宿業資料,包含旅館民宿店家的名稱、簡介、電話、地址、座標等資料(英文)
  • 各年度公費留學考試報名及錄取人數

    Payment instrument Free
    Update frequency Irregular
    近年公費留學考試報名及錄取人數