Applicaiton Required

H11-M26_基於用戶回饋資訊之分散式動態訓練策略

Abstract

Federated learning provides a decentralized learning without data exchange. Among them, the Federated Average (FedAVG) framework is the most likely to be implemented in real world application due to its low communication overhead. However, this architecture can easily affect the efficiency of global model convergence when there are differences data distribution in individual user. Therefore, in this paper, we propose an aggregation strategy called significant Weighted feature aggregation method, in which the features with large variation are appropriately weighted at the server side to improve the model convergence speed even in not identically and independently distributed (non-iid) environments. As shown in our experiments, our approach had over 10% of improvements compared to the FedAVG.

Keywords

deep learning, distribution system, federated learning

データとリソース

追加情報

フィールド
作成者 楊惟中
メンテナー 羅梅爾
最終更新 10月 4, 2023, 09:57 (CST)
作成日 7月 11, 2023, 11:04 (CST)

推薦資料集:


  • 台灣中油股份有限公司_「苯」參考牌價表

    Payment instrument Free
    Update frequency Irregular
    本資料集主要提供台灣中油公司苯最新參考牌價資訊。
  • 新北市102年公告土地現值及公告地價-中和區

    Payment instrument Free
    Update frequency Irregular
    為推動不動產買賣資訊透明化,建立便利親和的網路查詢平台,新北市政府地政局開放公告土地現值資料給予民眾,可多多利用下載。公告土地現值資料量較大,請參考資料使用說明以及常見問答後再行取得資料。
  • 微電腦闖越平交道自動照相機設置地點

    Payment instrument Free
    Update frequency Irregular
    提供微電腦闖越平交道自動照相機設置地點
  • 高雄市旗津區109年公告土地現值

    Payment instrument Free
    Update frequency Irregular
    109年-高雄市旗津區公告土地現值
  • 108年10月臺南市不動產實價登錄資訊(買賣案件)

    Payment instrument Free
    Update frequency Irregular
    108年10月-臺南市不動產實價登錄資訊(買賣案件)