授權: Other (Non-Commercial) 標籤: continue learning

篩選結果
  • 需申請審核 H11-M13_持續性學習之物體偵測模型

    更新頻率 不定期 瀏覽次數 1868 下載次數 3
    Method 由於現有的病理影像資料集常是以實例分割的方式提供,為了達成更好的持續學習物件偵測效果,本方法於持續學習步驟中每次分為兩階段,於第一階段,先利用現有的持續學習語意分割方法SSUL, NeurIPS 2021生成語意分割先驗知識,再於第二階段以此先驗知識為額外輸入協助達成更好的持續學習物件偵測結果。 Usage 能用於持續性學習之細胞偵測模型...
  • 需申請審核 H11-M17_持續性學習結合自我標註資料之影像分割模型

    更新頻率 不定期 瀏覽次數 1490 下載次數 0
    Method 以圖像級標籤為基礎達成語意分割的持續學習,在訓練Transformer的同時讓一部分的模型向CNN學習,結合Transformer及CNN的知識來達成更好的結果。並在持續性學習中同時針對Transformre及CNN做蒸餾式學習,達成持續學習的效果。 Usage 弱監督及持續性學習之細胞分割模型 Release Note v1.0.0,...
  • 需申請審核 M11-M16_持續性學習結合自我標註資料之物體偵測模型

    更新頻率 不定期 瀏覽次數 1274 下載次數 0
    Method 使用半監督式學習訓練之乳癌物件偵測模型,利用GAN模型自己生成資料集影像,克服原始資料集影像較少的問題,讓偵測模型能有足夠多的訓練資料。再使用前任務的模型標上偽標籤,達成半監督與數據擴增的效果。 Usage 半監督式學習訓練之乳癌物件偵測模型 Release Note v1.0.0, 2023/10/10...
  • 需申請審核 H11-M14_持續性學習之影像分割模型

    更新頻率 不定期 瀏覽次數 1568 下載次數 3
    Method 為了使細胞實例分割模型具有持續性學習的能力,本方法以兩階段的實例分割模型為框架,加入輸出層級以及特徵層級的知識蒸餾以解決持續性學習裡的災難性遺忘問題,並且以偽標籤方法來解決來解決背景偏移問題,使得模型可以持續學習新資料以及新類別。 Usage 能用於持續性學習之細胞分割模型 Release Note v1.0.0, 2023/07/11...
您也可以使用API (應用程式介面) (see API 文件)註冊。