-
需申請審核 H11-M17_持續性學習結合自我標註資料之影像分割模型
更新頻率 不定期 瀏覽次數 1600 下載次數 0Method 以圖像級標籤為基礎達成語意分割的持續學習,在訓練Transformer的同時讓一部分的模型向CNN學習,結合Transformer及CNN的知識來達成更好的結果。並在持續性學習中同時針對Transformre及CNN做蒸餾式學習,達成持續學習的效果。 Usage 弱監督及持續性學習之細胞分割模型 Release Note v1.0.0,... -
需申請審核 H11-M05_基於不精確標註資料的弱監督式病理影像切割模型
更新頻率 不定期 瀏覽次數 3543 下載次數 46Method: 使用多實例學習訓練WSI的分類與切割模型,只需要給定WSI有無包含腫瘤組織資訊即可訓練具有分割與分類效果的模型。 模型訓練分為兩階段, 第一階段是使用 Self-Supervised Learning 去訓練一個好的 embedder,把patch轉為特徵向量 ,第二階段會使用到訓練好的 Aggregator...
您也可以使用API (應用程式介面) (see API 文件)註冊。