需申請審核

H11-M23_弱監督式深度學習方法之分割方法

Common bile duct (CBD) stones caused diseases are life-threatening. Because CBD stones locate in the distal part of the CBD and have relatively small sizes, detecting CBD stones from CT scans is a challenging issue in the medical domain. Methods and procedures: We propose a deep learning based weakly-supervised method called multiple field-of-view based attention driven network (MFADNet) to detect CBD stones from CT scans based on image-level labels. Three dominant modules including a multiple field-of-view encoder, an attention driven decoder and a classification network are collaborated in the network. The encoder learns the feature of multi-scale contextual information while the decoder with the classification network is applied to locate the CBD stones based on spatial-channel attentions. To drive the learning of the whole network in a weakly-supervised and end-to-end trainable manner, four losses including the foreground loss, background loss, consistency loss and classification loss are proposed. Results: Compared with state-of-the-art weakly-supervised methods in the experiments, the proposed method can accurately classify and locate CBD stones based on the quantitative and qualitative results. Conclusion: We propose a novel multiple field-of-view based attention driven network for a new medical application of CBD stone detection from CT scans while only image-levels are required to reduce the burdens of labeling and help physicians automatically diagnose CBD stones. Clinical impact: Our deep learning method can help physicians localize relatively small CBD stones for effectively diagnosing CBD stone caused diseases.

Citation

Y. -H. Chang, M. -Y. Lin, M. -T. Hsieh, M. -C. Ou, C. -R. Huang and B. -S. Sheu, "Multiple Field-of-View Based Attention Driven Network for Weakly Supervised Common Bile Duct Stone Detection," in IEEE Journal of Translational Engineering in Health and Medicine, vol. 11, pp. 394-404, 2023, doi: 10.1109/JTEHM.2023.3286423.

Acknowledgements

This work was supported in part by the National Science and Technology Council, Taiwan under Grant NSTC 111-2634-F-006-012. We thank to National Center for High-performance Computing (NCHC) for providing computational and storage resources.

資料與資源

額外的資訊

欄位
來源 https://github.com/nchucvml/MFADNet
作者 Ya-Han Chang
維護者 丁維德
版本 1.0, 2022/07/11
最後更新 十月 11, 2023, 17:45 (CST)
建立 七月 11, 2023, 15:16 (CST)

推薦資料集:


  • 桃園市公布違反勞動基準法事業單位名單

    付費方式 免費
    更新頻率 不定期
    公布違反勞動基準法事業單位名單
  • 歷年台灣自來水公司用戶數

    付費方式 免費
    更新頻率 不定期
    台灣自來水公司供水對象,可分為一般用水、工業用水、船舶用水、機關及其他用水等
  • 經濟部能源局_高壓用電設備檢驗機構資訊

    付費方式 免費
    更新頻率 不定期
    依據「經濟部認可檢驗機構與原製造廠家及高壓用電設備施行試驗作業要點」規定,檢驗機構係指依經濟部認可之高壓用電設備項目及試驗類型施行試驗之機構。經濟部能源局已建置高壓用電設備試驗與審查資訊系統(http://www.highvoltage.org.tw),登錄高壓用電設備檢驗機構資訊,可供廠家查詢及選擇送交何間檢驗機構施作試驗。本資料集收錄時間從99年1...
  • 勞保局政策宣導廣告動支情形

    付費方式 免費
    更新頻率 不定期
    勞動部勞工保險局政策宣導廣告動支彙整資料
  • 國民年金保險基金年度經營概況

    付費方式 免費
    更新頻率 不定期
    提供年度國民年金保險基金經營概況