需申請審核

H11-M23_弱監督式深度學習方法之分割方法

Common bile duct (CBD) stones caused diseases are life-threatening. Because CBD stones locate in the distal part of the CBD and have relatively small sizes, detecting CBD stones from CT scans is a challenging issue in the medical domain. Methods and procedures: We propose a deep learning based weakly-supervised method called multiple field-of-view based attention driven network (MFADNet) to detect CBD stones from CT scans based on image-level labels. Three dominant modules including a multiple field-of-view encoder, an attention driven decoder and a classification network are collaborated in the network. The encoder learns the feature of multi-scale contextual information while the decoder with the classification network is applied to locate the CBD stones based on spatial-channel attentions. To drive the learning of the whole network in a weakly-supervised and end-to-end trainable manner, four losses including the foreground loss, background loss, consistency loss and classification loss are proposed. Results: Compared with state-of-the-art weakly-supervised methods in the experiments, the proposed method can accurately classify and locate CBD stones based on the quantitative and qualitative results. Conclusion: We propose a novel multiple field-of-view based attention driven network for a new medical application of CBD stone detection from CT scans while only image-levels are required to reduce the burdens of labeling and help physicians automatically diagnose CBD stones. Clinical impact: Our deep learning method can help physicians localize relatively small CBD stones for effectively diagnosing CBD stone caused diseases.

Citation

Y. -H. Chang, M. -Y. Lin, M. -T. Hsieh, M. -C. Ou, C. -R. Huang and B. -S. Sheu, "Multiple Field-of-View Based Attention Driven Network for Weakly Supervised Common Bile Duct Stone Detection," in IEEE Journal of Translational Engineering in Health and Medicine, vol. 11, pp. 394-404, 2023, doi: 10.1109/JTEHM.2023.3286423.

Acknowledgements

This work was supported in part by the National Science and Technology Council, Taiwan under Grant NSTC 111-2634-F-006-012. We thank to National Center for High-performance Computing (NCHC) for providing computational and storage resources.

資料與資源

額外的資訊

欄位
來源 https://github.com/nchucvml/MFADNet
作者 Ya-Han Chang
維護者 丁維德
版本 1.0, 2022/07/11
最後更新 十月 11, 2023, 17:45 (CST)
建立 七月 11, 2023, 15:16 (CST)

推薦資料集:


  • 慢性疾病盛行率

    付費方式 免費
    更新頻率 不定期
    96年全國20歲以上民眾高血壓、高血糖、高血脂、代謝症候群及慢性腎臟病盛行率
  • 歷年土壤調查_環保署土壤重金屬含量調查(1公頃)

    付費方式 免費
    更新頻率 不定期
    民國81至88年,環保署為更進一步掌握土壤污染情形,與各縣市環保局合作辦理土壤調查,調查對象為中樣區(25公頃)調查歸類為疑似污染的重點地區,針對中樣區調查結果之重金屬含量偏高地區或認定有污染地區,分由北、中、南3區,再以1公頃網格為採樣單位辦理更細密的小樣區調查。調查結果重金屬含量列為第五級的累積面積計為950餘公頃,造成污染的主因為灌溉水遭廢污水污...
  • 需申請審核

    2018下半年福爾摩沙衛星五號 L1A 屏東

    付費方式 免費
    更新頻率 不定期
    此資料集為非公開資料,需由 TASA 進行資料審核。 欲申請者,請進入資料集後點選右上方「申請」填寫申請單;申請前請先登入系統。 若尚無平台帳號,請至 https://scidm.nchc.org.tw/user/register 進行註冊
  • 新北市有機農場-瑞芳區

    付費方式 免費
    更新頻率 不定期
    新北市有機農場資料,含地址、電話及經營者名稱等資料-瑞芳區
  • 臺中市103年5月份十大易肇事路段(口)

    付費方式 免費
    更新頻率 不定期
    臺中市103年5月份十大易肇事路段(口)