需申請審核

H11-M23_弱監督式深度學習方法之分割方法

Common bile duct (CBD) stones caused diseases are life-threatening. Because CBD stones locate in the distal part of the CBD and have relatively small sizes, detecting CBD stones from CT scans is a challenging issue in the medical domain. Methods and procedures: We propose a deep learning based weakly-supervised method called multiple field-of-view based attention driven network (MFADNet) to detect CBD stones from CT scans based on image-level labels. Three dominant modules including a multiple field-of-view encoder, an attention driven decoder and a classification network are collaborated in the network. The encoder learns the feature of multi-scale contextual information while the decoder with the classification network is applied to locate the CBD stones based on spatial-channel attentions. To drive the learning of the whole network in a weakly-supervised and end-to-end trainable manner, four losses including the foreground loss, background loss, consistency loss and classification loss are proposed. Results: Compared with state-of-the-art weakly-supervised methods in the experiments, the proposed method can accurately classify and locate CBD stones based on the quantitative and qualitative results. Conclusion: We propose a novel multiple field-of-view based attention driven network for a new medical application of CBD stone detection from CT scans while only image-levels are required to reduce the burdens of labeling and help physicians automatically diagnose CBD stones. Clinical impact: Our deep learning method can help physicians localize relatively small CBD stones for effectively diagnosing CBD stone caused diseases.

Citation

Y. -H. Chang, M. -Y. Lin, M. -T. Hsieh, M. -C. Ou, C. -R. Huang and B. -S. Sheu, "Multiple Field-of-View Based Attention Driven Network for Weakly Supervised Common Bile Duct Stone Detection," in IEEE Journal of Translational Engineering in Health and Medicine, vol. 11, pp. 394-404, 2023, doi: 10.1109/JTEHM.2023.3286423.

Acknowledgements

This work was supported in part by the National Science and Technology Council, Taiwan under Grant NSTC 111-2634-F-006-012. We thank to National Center for High-performance Computing (NCHC) for providing computational and storage resources.

資料與資源

額外的資訊

欄位
來源 https://github.com/nchucvml/MFADNet
作者 Ya-Han Chang
維護者 丁維德
版本 1.0, 2022/07/11
最後更新 2023年10月11日, 上午9點45分 (UTC+00:00)
建立 2023年7月11日, 早上7點16分 (UTC+00:00)

推薦資料集:


  • 清淨手術術後使用抗生素超過三日比率(醫院總額指標)

    付費方式 免費
    更新頻率 不定期
    資料來源:保險醫事服務機構醫療服務點數申報資料 分子:手術後≧3日使用抗生素案件數。 分母:清淨手術案件數。 計算公式:(分子/分母)x 100%
  • 歷年土壤調查環保署農地調查計畫桃園地區污染調查計畫

    付費方式 免費
    更新頻率 不定期
    民國101年環保署委辦「桃園地區污染農地調查計畫」,本計畫針對署內另案計畫調查結果之高污染潛勢地區進行全方位擴大調查,範圍包含桃園中壢工業區下游地區新庄、3-8&3-9、3-6、4-8、4-9...
  • 需申請審核

    StormMedia Cdnlogs July

    付費方式 免費
    更新頻率 不定期
    風傳媒七月CDN log、 去識別cookie 編號0-2383(800為一個檔案)。此資料集為非公開資料欲申請此資料者,需具有資料集平台帳號,可至iService網站:https://iservice.nchc.org.tw 申請。 本資料風傳媒授權期限為2021年8月31日止。
  • insight_test_17743

    付費方式 免費
    更新頻率 不定期
  • 社區營造經費表

    付費方式 免費
    更新頻率 不定期
    本市推動社區營造相關經費及補助資訊