需申請審核

H11-M23_弱監督式深度學習方法之分割方法

Common bile duct (CBD) stones caused diseases are life-threatening. Because CBD stones locate in the distal part of the CBD and have relatively small sizes, detecting CBD stones from CT scans is a challenging issue in the medical domain. Methods and procedures: We propose a deep learning based weakly-supervised method called multiple field-of-view based attention driven network (MFADNet) to detect CBD stones from CT scans based on image-level labels. Three dominant modules including a multiple field-of-view encoder, an attention driven decoder and a classification network are collaborated in the network. The encoder learns the feature of multi-scale contextual information while the decoder with the classification network is applied to locate the CBD stones based on spatial-channel attentions. To drive the learning of the whole network in a weakly-supervised and end-to-end trainable manner, four losses including the foreground loss, background loss, consistency loss and classification loss are proposed. Results: Compared with state-of-the-art weakly-supervised methods in the experiments, the proposed method can accurately classify and locate CBD stones based on the quantitative and qualitative results. Conclusion: We propose a novel multiple field-of-view based attention driven network for a new medical application of CBD stone detection from CT scans while only image-levels are required to reduce the burdens of labeling and help physicians automatically diagnose CBD stones. Clinical impact: Our deep learning method can help physicians localize relatively small CBD stones for effectively diagnosing CBD stone caused diseases.

Citation

Y. -H. Chang, M. -Y. Lin, M. -T. Hsieh, M. -C. Ou, C. -R. Huang and B. -S. Sheu, "Multiple Field-of-View Based Attention Driven Network for Weakly Supervised Common Bile Duct Stone Detection," in IEEE Journal of Translational Engineering in Health and Medicine, vol. 11, pp. 394-404, 2023, doi: 10.1109/JTEHM.2023.3286423.

Acknowledgements

This work was supported in part by the National Science and Technology Council, Taiwan under Grant NSTC 111-2634-F-006-012. We thank to National Center for High-performance Computing (NCHC) for providing computational and storage resources.

資料與資源

額外的資訊

欄位
來源 https://github.com/nchucvml/MFADNet
作者 Ya-Han Chang
維護者 丁維德
版本 1.0, 2022/07/11
最後更新 十月 11, 2023, 17:45 (CST)
建立 七月 11, 2023, 15:16 (CST)

推薦資料集:


  • 歲入累計表

    付費方式 免費
    更新頻率 不定期
    本會104年度10月份歲入累計表,已同步登載於https://data.gov.tw/dataset/20840
  • 台灣經濟論衡-經濟統計-主要工業產品產量

    付費方式 免費
    更新頻率 不定期
    台灣經濟論衡一年出刊4次,附表經濟統計為挑選重要且具代表性的總體經濟統計項目,以便讀者能整體性了解台灣目前經濟發展情形。(自107年秋季號起本刊取消「經濟統計」單元,資料不再更新)
  • 台灣中油股份有限公司_人力資源處訓練所_場地出租資訊

    付費方式 免費
    更新頻率 不定期
    台灣中油股份有限公司場地出租資訊
  • 經濟部能源局_臺灣能源統計指標

    付費方式 免費
    更新頻率 不定期
    1.資料內涵:我國能源經濟、能源效率、能源安全及能源環境相關指標。 2.收集目的:做為我國能源相關政策制定及檢視之依據。 3.收集方式:多由能源供給端產銷資料及政府公告統計數據加以彙整計算而得。
  • 宜蘭縣最近5年土地增值稅稅源統計表(103-107年)

    付費方式 免費
    更新頻率 不定期
    提供宜蘭縣最近5年土地增值稅稅源統計表(103-107年)