需申請審核

H11-M26_基於用戶回饋資訊之分散式動態訓練策略

Abstract

Federated learning provides a decentralized learning without data exchange. Among them, the Federated Average (FedAVG) framework is the most likely to be implemented in real world application due to its low communication overhead. However, this architecture can easily affect the efficiency of global model convergence when there are differences data distribution in individual user. Therefore, in this paper, we propose an aggregation strategy called significant Weighted feature aggregation method, in which the features with large variation are appropriately weighted at the server side to improve the model convergence speed even in not identically and independently distributed (non-iid) environments. As shown in our experiments, our approach had over 10% of improvements compared to the FedAVG.

Keywords

deep learning, distribution system, federated learning

資料與資源

額外的資訊

欄位
作者 楊惟中
維護者 羅梅爾
最後更新 2023年10月4日, 凌晨1點57分 (UTC+00:00)
建立 2023年7月11日, 凌晨3點04分 (UTC+00:00)

推薦資料集:


  • 花蓮縣戒菸服務機構

    付費方式 免費
    更新頻率 不定期
    花蓮縣戒菸服務機構
  • 花蓮縣通過食品衛生優良評鑑名單(GHP)

    付費方式 免費
    更新頻率 不定期
    花蓮縣通過食品衛生優良評鑑名單(GHP)
  • 新北市政府警察局及所屬年度決算-以前年度-102

    付費方式 免費
    更新頻率 不定期
    新北市政府警察局及所屬年度決算-以前年度-102
  • 上市公司股利分派情形-經股東會確認

    付費方式 免費
    更新頻率 不定期
    股利分派情形-經股東會確認彙總表 (證交所)
  • insight_test_14511

    付費方式 免費
    更新頻率 不定期