需申請審核

H11-M116_ADMM-SRNet 基於 ADMM 與對比特徵之單分類稀疏表示網路

Method

One-class classification aims to learn one-class models from only in-class training samples. Because of lacking out-of-class samples during training, most conventional deep learning based methods suffer from the feature collapse problem. In contrast, contrastive learning based methods can learn features from only in-class samples but are hard to be end-to-end trained with one-class models. To address the aforementioned problems, we propose alternating direction method of multipliers based sparse representation network (ADMM-SRNet). ADMM-SRNet contains the heterogeneous contrastive feature (HCF) network and the sparse dictionary (SD) network. The HCF network learns in-class heterogeneous contrastive features by using contrastive learning with heterogeneous augmentations. Then, the SD network models the distributions of the in-class training samples by using dictionaries computed based on ADMM. By coupling the HCF network, SD network and the proposed loss functions, our method can effectively learn discriminative features and one-class models of the in-class training samples in an end-to-end trainable manner. Experimental results show that the proposed method outperforms state-of-the-art methods on CIFAR-10, CIFAR-100 and ImageNet-30 datasets under one-class classification settings. Code is available at https://github.com/nchucvml/ADMM-SRNet .

Usage

COMMING SOON

Release Note

  • v1.0.0, 2023/07/11

Citation

C. -Y. Chiou, K. -T. Lee, C. -R. Huang and P. -C. Chung, "ADMM-SRNet: Alternating Direction Method of Multipliers Based Sparse Representation Network for One-Class Classification," in IEEE Transactions on Image Processing, vol. 32, pp. 2843-2856, 2023, doi: 10.1109/TIP.2023.3274488.

Acknowledgements

This work was supported in part by the National Science and Technology Council of Taiwan under Grant NSTC 111-2634-F-006-012, Grant NSTC 111-2628-E-006-011-MY3, Grant NSTC 112-2622-8-006-009-TE1, and Grant MOST 111-2327-B-006-007. We thank to National Center for High-performance Computing (NCHC) for providing computational and storage resources.

資料與資源

此資料集沒有資料

額外的資訊

欄位
來源 https://github.com/nchucvml/ADMM-SRNet
作者 邱建毓
最後更新 十月 11, 2023, 15:01 (CST)
建立 七月 11, 2023, 11:44 (CST)
聯繫Email email@address.org
聯繫窗口 someone

推薦資料集:


  • 國道公路固定式測速照相地點

    付費方式 免費
    更新頻率 不定期
    國道公路固定式測速照相地點
  • 綜合所得稅各類所得平均每件所得金額10分位申報統計表

    付費方式 免費
    更新頻率 不定期
    綜合所得稅各類所得平均每件所得金額10分位申報統計表 單位:金額(千元)
  • 107年高雄市政府1999話務中心派工受理前三名機關統計表

    付費方式 免費
    更新頻率 不定期
    提供107年高雄市政府1999話務中心派工受理前三名機關統計表
  • 外國及大陸銀行在台分行資產負債統計表

    付費方式 免費
    更新頻率 不定期
    外國及大陸銀行在台分行資產負債統計表係指該類別銀行之總和資產負債表,其資產(或負債與淨值)合計為該類別個別銀行資產(或負債與淨值)之加總。
  • 最近五年產險市場任意汽車保險保費收入統計-自用大客車

    付費方式 免費
    更新頻率 不定期
    最近五年產險市場任意汽車保險保費收入統計-自用大客車(保發中心)