需申請審核

H11-M116_ADMM-SRNet 基於 ADMM 與對比特徵之單分類稀疏表示網路

Method

One-class classification aims to learn one-class models from only in-class training samples. Because of lacking out-of-class samples during training, most conventional deep learning based methods suffer from the feature collapse problem. In contrast, contrastive learning based methods can learn features from only in-class samples but are hard to be end-to-end trained with one-class models. To address the aforementioned problems, we propose alternating direction method of multipliers based sparse representation network (ADMM-SRNet). ADMM-SRNet contains the heterogeneous contrastive feature (HCF) network and the sparse dictionary (SD) network. The HCF network learns in-class heterogeneous contrastive features by using contrastive learning with heterogeneous augmentations. Then, the SD network models the distributions of the in-class training samples by using dictionaries computed based on ADMM. By coupling the HCF network, SD network and the proposed loss functions, our method can effectively learn discriminative features and one-class models of the in-class training samples in an end-to-end trainable manner. Experimental results show that the proposed method outperforms state-of-the-art methods on CIFAR-10, CIFAR-100 and ImageNet-30 datasets under one-class classification settings. Code is available at https://github.com/nchucvml/ADMM-SRNet .

Usage

COMMING SOON

Release Note

  • v1.0.0, 2023/07/11

Citation

C. -Y. Chiou, K. -T. Lee, C. -R. Huang and P. -C. Chung, "ADMM-SRNet: Alternating Direction Method of Multipliers Based Sparse Representation Network for One-Class Classification," in IEEE Transactions on Image Processing, vol. 32, pp. 2843-2856, 2023, doi: 10.1109/TIP.2023.3274488.

Acknowledgements

This work was supported in part by the National Science and Technology Council of Taiwan under Grant NSTC 111-2634-F-006-012, Grant NSTC 111-2628-E-006-011-MY3, Grant NSTC 112-2622-8-006-009-TE1, and Grant MOST 111-2327-B-006-007. We thank to National Center for High-performance Computing (NCHC) for providing computational and storage resources.

資料與資源

此資料集沒有資料

額外的資訊

欄位
來源 https://github.com/nchucvml/ADMM-SRNet
作者 邱建毓
最後更新 十月 11, 2023, 15:01 (CST)
建立 七月 11, 2023, 11:44 (CST)
聯繫Email email@address.org
聯繫窗口 someone

推薦資料集:


  • 新北市固定式測速照相-新店區

    付費方式 免費
    更新頻率 不定期
    新北市政府警察局所提供的固定測速照相主要提供欄位包含行政區、設置位置、速限、取締項目。-新店區
  • 108年度高雄市總預算附屬單位預算及綜計表(法定預算)-作業基金現金流量綜計表(依基金別分列)

    付費方式 免費
    更新頻率 不定期
    作業基金現金流量綜計表(依基金別分列)
  • 國家教育研究院-核能學術名詞

    付費方式 免費
    更新頻率 不定期
    核能英中對照名詞等資訊。
  • 新竹縣政府稅務局107年1月至6月辦理國家賠償事件處理情形統計表

    付費方式 免費
    更新頻率 不定期
    107年1月至6月國家賠償事件處理情形統計表
  • 水情監測歷史影像資料集 -2019 鳶山堰站一號鏡頭

    付費方式 免費
    更新頻率 不定期
    本資料集彙整監測站 - 鳶山堰站一號鏡頭,2019年度每日歷史影像檔(.jpg)封裝之壓縮檔。 檔名說明: 年度_月_日_測站名稱.zip 全台目前現有監測影像共有1089組監視影像歷史紀錄,監測重要河川、橋梁、堰壩等水利設施,以及易淹水地區,並全年不間斷監測並儲存資料。