需申請審核

H11-M116_ADMM-SRNet 基於 ADMM 與對比特徵之單分類稀疏表示網路

Method

One-class classification aims to learn one-class models from only in-class training samples. Because of lacking out-of-class samples during training, most conventional deep learning based methods suffer from the feature collapse problem. In contrast, contrastive learning based methods can learn features from only in-class samples but are hard to be end-to-end trained with one-class models. To address the aforementioned problems, we propose alternating direction method of multipliers based sparse representation network (ADMM-SRNet). ADMM-SRNet contains the heterogeneous contrastive feature (HCF) network and the sparse dictionary (SD) network. The HCF network learns in-class heterogeneous contrastive features by using contrastive learning with heterogeneous augmentations. Then, the SD network models the distributions of the in-class training samples by using dictionaries computed based on ADMM. By coupling the HCF network, SD network and the proposed loss functions, our method can effectively learn discriminative features and one-class models of the in-class training samples in an end-to-end trainable manner. Experimental results show that the proposed method outperforms state-of-the-art methods on CIFAR-10, CIFAR-100 and ImageNet-30 datasets under one-class classification settings. Code is available at https://github.com/nchucvml/ADMM-SRNet .

Usage

COMMING SOON

Release Note

  • v1.0.0, 2023/07/11

Citation

C. -Y. Chiou, K. -T. Lee, C. -R. Huang and P. -C. Chung, "ADMM-SRNet: Alternating Direction Method of Multipliers Based Sparse Representation Network for One-Class Classification," in IEEE Transactions on Image Processing, vol. 32, pp. 2843-2856, 2023, doi: 10.1109/TIP.2023.3274488.

Acknowledgements

This work was supported in part by the National Science and Technology Council of Taiwan under Grant NSTC 111-2634-F-006-012, Grant NSTC 111-2628-E-006-011-MY3, Grant NSTC 112-2622-8-006-009-TE1, and Grant MOST 111-2327-B-006-007. We thank to National Center for High-performance Computing (NCHC) for providing computational and storage resources.

資料與資源

此資料集沒有資料

額外的資訊

欄位
來源 https://github.com/nchucvml/ADMM-SRNet
作者 邱建毓
最後更新 2023年10月11日, 早上7點01分 (UTC+00:00)
建立 2023年7月11日, 凌晨3點44分 (UTC+00:00)
聯繫Email email@address.org
聯繫窗口 someone

推薦資料集:


  • 國民健康署110年菸害防制及衛生保健基金預算案

    付費方式 免費
    更新頻率 不定期
    國民健康署110年菸害防制及衛生保健基金預算案
  • 11293-02-01-2 臺中市環境用藥管理成果統計

    付費方式 免費
    更新頻率 不定期
    有關「臺中市環境用藥管理成果統計」相關資料
  • LASS_ARCHIVE-lass-2021q3

    付費方式 免費
    更新頻率 不定期
  • 中港園區於傳媒(含平面、網路、廣播)辦理政策宣導之相關廣告費用統計資訊(公務預算)

    付費方式 免費
    更新頻率 不定期
    提供中港園區於傳媒(含平面、網路、廣播)辦理政策宣導之相關廣告費用明細資料(公務預算)
  • 宜蘭縣公私立托嬰中心

    付費方式 免費
    更新頻率 不定期
    宜蘭公私立托嬰中心